Hyperkalemia – a silent killer? PD Dr. med. Andreas Kistler Kantonsspital Frauenfeld andreas.kistler@stgag.ch www.nephrologie-thurgau.ch ### Mr. Hyper K. Lemia charged with serial murder #### Internal and external K+-balance Total body K⁺: 98% intracellular 2% extracellular From: Giebisch et al. In: Medical Physiology 2017 ### Mechanisms leading to hyperkalemia **Excess potassium intake** **Nutrition** Potassium supplements Impaired renal function Impaired aldosterone secretion or action: Renin-angiotensin-aldosterone system (RAAS) inhibitors Reduced potassium excretion - Adrenal insufficiency - Pseudohypoaldosteronism - Hyporeninemic hypoaldosteronism Low distal Na⁺ delivery **Potassium redistribution** **Acidosis** Insulin deficiency or resistance **Drugs** Strenuous exercice Tissue breakdown (tumor lysis, rhabdomyolysis...) Hemolysis #### Consequences of hyperkalemia - Clinical consequences of hyperkalemia are caused by alterations in membrane excitability - These consequences may be life-threatening, but symptoms are unspescific and often absent: - Neuromuscular: fatigue, weakness, muscle pain or tightness, paresthesias - Gastrointestinal: nausea, vomiting - Cardiac: palpitations ### Serum-K⁺ and mortality #### Serum-K+ and mortality - Hyperkalemia is associated with higher mortality across a spectrum of diseases - But: association = causality? - Clinical consequences of hyperkalemia depend not only on the K⁺-level, but: - rapidity of onset - presence of concomitant electrolyte abnormalities - Medications - other comorbidities - → Hence, there is no clear cut off for a "critically elevated" an also no upper limit for a "safe" K+-level! #### Consequences of hyperkalemia ## Hyperkalemia: a double-edged sword Direct, potentially deleterious cardiac and neuromuscular effects Hyperkalemia prompts the discontinuation of important medications and healthy nutrition Table 1 | Guideline recommendations for RAASi treatment of heart failure, chronic kidney disease, and diabetes mellitus^a | Disease state | Recommendation | Source of recommendation | Level of recommendation | Strength of evidence | |--|--|--|----------------------------|--| | Heart failure with reduced ejection fraction | In patients with history of MI and reduced EF, ACEIs or
ARBs should be used to prevent HF | ACC/AHA ¹⁸ | 1 | Α | | reduced ejection naction | ACEIs are recommended in patients with HFrEF (LVEF ≤40%) and current or prior symptoms, unless contraindicated, to reduce morbidity and mortality | ESC ¹⁹
ACC/AHA ¹⁸ | 1 | Α | | | ARBs are recommended in patients with HFrEF with current or prior symptoms who are ACEI-intolerant, unless contraindicated, to reduce morbidity and mortality | ESC ¹⁹
ACC/AHA ¹⁸ | 1 | Α | | | Addition of an ARB may be considered in persistently symptomatic patients with HFrEF who are already being treated with an ACEI and a beta-blocker in whom an aldosterone antagonist is not indicated or tolerated | ESC ¹⁹
ACC/AHA ¹⁸ | IIb | А | | | MRAs are recommended in patients with NYHA class II to IV HF and who have LVEF of ≤35%, unless contraindicated, to reduce morbidity and mortality | ESC ¹⁹
ACC/AHA ¹⁸ | 1 | A | | | MRAs are recommended to reduce morbidity and mortality following an acute MI in patients who have LVEF ≤40% who develop HF symptoms or who have a history of DM, unless contraindicated | ACC/AHA ¹⁸ | Ţ | А | | Chronic kidney disease | For prevention of CKD progression, suggest an ARB or ACEI be used in diabetic adults with CKD and UAE 30 to 300 mg/24 h | KDIGO ^{20,21} | 2 | D | | | For prevention of CKD progression, recommend an ARB or ACEI be used in both diabetic and nondiabetic adults with CKD and UAE >300 mg/24 h | KDIGO ^{20,21} | 1 | В | | | Do not routinely discontinue RAASi (ACEI, ARB, MRA, direct renin inhibitor) in people with GFR <30 ml/min/ 1.73 m ² as they remain nephroprotective | KDIGO ^{22,23} | NA | NA | | | In the population ≥18 years of age with CKD, initial (or add-on) antihypertensive treatment should include an ACEI or ARB to improve kidney outcomes. This applies to all CKD patients with hypertension regardless of race or diabetes status | JNC 8 ^{24,25} | Moderate
recommendation | В | | Diabetes mellitus | Pharmacological therapy for patients with DM and HTN should comprise a regimen that includes either an ACEI or an ARB | ADA ²⁶ | | В | | | Either an ACEI or ARB is suggested for the treatment
of diabetic nephropathy patients with modestly
elevated UAE (30–299 mg/day) and is recommended
for those with UAE >300 mg/day | ADA ²⁷ | | B: UAE 30–299 mg/day
A: UAE >300 mg/day | | Resistant hypertension | MRAs should be considered, if no contraindication exists | ESH/ESC ²⁸
JNC 8 ²⁴ | lla | В | ACC, American College of Cardiology; ACEI, angiotensin-converting enzyme inhibitor; ADA, American Diabetes Association; AHA, American Heart Association; ARB, angiotensin receptor blocker; CKD, chronic kidney disease; DM, diabetes mellitus; EF, ejection fraction; ESC, European Society of Cardiology; ESH, European Society of Hypertension; GFR, glomerular filtration rate; HF, heart failure; HFrEF, HF with reduced EF; HTN, hypertension; JNC, Joint National Committee; KDIGO, Kidney Disease Improving Global Outcomes; LVEF, left ventricular ejection fraction; MI, myocardial infarction; MRA, mineralocorticoid receptor antagonist; NA, not applicable; NYHA, New York Heart Association; RAASi, renin-angiotensin-aldosterone system inhibitor; UAE, urine albumin excretion. aRecent data suggest ACEIs are possibly superior to ARBs for kidney failure, cardiovascular death, and all-cause mortality in patients with CKD. 15 ### RAASi use in the real world setting - Several studies have shown underutilization of RAASi compared to guideline recommendations - When RAASi are prescribed, they are often used in submaximal doses #### Reasons for withholding RAASi therapy | Not indicated | 79.1% | | | | |--------------------------|-------|--|--|--| | Contraindicated | 6.6 % | | | | | Not tolerated | 6.4% | | | | | <u>Reasons</u> | | | | | | Hypotension | 48.1% | | | | | Worsening renal function | 26.7% | | | | | Cough | 7.2% | | | | | Hyperkalaemia | 5.5% | | | | | Other reasons | 7.9% | | | | Komajda M, et al. *Eur J Heart Fail*. 2016;18:514–22. #### Reasons for withholding RAASi therapy Yildirim, Ren Fail 2012 Ironically, patients with risk factors for hyperkalemia are also those who receive the greatest absolute benefit from RAASi. ### Hyperkalemia, subsequent RAASi adaptation and mortailty RAAS RAAS indicates renin-angiotensin-aldosterone system ■ Figure 2B. Among Patients on RAAS Inhibitor at Submaximum Dose across dose categories) across dose categories) across dose categories) across dose categories) Epstein, Am J Manag Care 2015 #### Hyperkalemia – really of concern? #### Current management of hyperkalemia **Potassium redistribution** Insulin - Glucose **Beta-agonists** **Bicarbonate** Facilitate renal potassium excretion Reduce / stop RAASi **Loop diuretics** Rehydration if volume depleted / less sodium restriction **Fludrocortisone** **Restrict potassium intake** **Nutritional restrictions** Facilitate intestinal potassium excretion Potassium binders **Extracorporeal removal** **Dialysis** #### Potassium-binders available and under evaluation | | Sodium polystyrene
sulfonate (SPS), Resonium® | Patiromer Calcium Sorbitex,
Veltassa® | Sodium zirconium
cyclosilicate, ZS-9 | |--------------------------------|--|--|---| | Exchange Ion | Na ⁺ | Ca ²⁺ | Na+ | | Onset of action | variable, 2 – 6 hours ¹ | 7 hours ³ | 1 – 6 hours ¹ | | Effect duration | variable, 6 – 24 hours ¹ | 12 – 24 hours ³ | unclear, 4 – 12 hours ¹ | | Preparation and administration | powder, 15g in 100mL water ² | powder, 8.4/16.8 g in 80mL water, apple juice, cranberry juice ¹⁵ | powder, 5/10/15 g in 240mL water ¹ | | Dosing | 3 – 4 x daily ² | chronic: 1 x daily with meal ¹⁵ | subacute: 3 x daily with meal ¹ chronic: 1 x daily with meal ¹ | | Setting | sub-acute (contraindicated at serum K+ < 5.0 mmol/L) ² | chronic (should not replace
emergency treatment) ¹⁵ | subacute or chronic ¹ | | Clinical studies performed | 1961: observational study ¹² 2014: randomized, single-blind, SPS vs. CPS (3d) ¹³ 2015: randomized, double-blind, placebo-controlled (7d) ¹⁴ | RLY5016-103: Onset of action (12d) ³ RLY5016-201: HD patients (1w) ⁴ RLY5016-202: PEARL (4w) ⁵ RLY5016-205: AMETHYST (52w) ⁶ RLY5016-301: OPAL (12w) ⁷ RLY5016-401: TOURMALINE(4w) ⁸ | ZS-002: Phase II (2/4d)
ZS-003: Phase III (3w) ⁹
ZS-004: HARMONIZE (4w) ¹⁰
ZS-005: long-term (52w) ¹¹ | | Safety profile | hypomagnesemia, anemia,
edema, nausea, vomiting,
constipation, diarrhea, GI tract
ulceration or necrosis ² | common: hypomagnesemia,
constipation, diarrhea, abdominal
pain, flatulence
uncommon: nausea, vomiting ¹⁵ | hypertension, peripheral edema,
urinary tract infection, nausea,
constipation, anemia, upper
respiratory tract infection ¹¹ | | Availability | US: approved since 1958
France: 1980 | US: approved since October 2015
EU: approved since July 2017
CH: under review | US: under review
EU: under review | ^{1.} Beccari MV, Meaney CJ. Core Evidence 2017; 12:11-24. 2. Fachinformation Resonium, www.swissmedicinfo.ch 3. Bushinsky DA, et al. Kidney International 2015;88:1427–1433. 4. Bushinsky DA, et al. Am J Nephrol 2016;44:404–410. 5. Pitt B, et al. Eur Heart J 2011;32(7):820-828. 6. Bakris G, et al. JAMA 2015;314:151-61. 7. Weir MR, et al. N Engl J Med 2015;372(3):211-221. 8. Pergola PE, et al. Am J Nephrol 2017;46:323-332. 9. Packham DK, et al. N Engl J Med 2015;372(3):222-231. 10. Kosiborod M, et al. JAMA 2014;312(21):2223-2233. 11. Fishbane S, et al. ZS-005 data, poster presented at ASN Kidney Week 2017; November 2017; New Orleans, #2759765. 12. Scherr L, et al. N Engl J Med 1961;264(39):115-119. 13. Nasir K, Ahmad A. J Ayub Med Coll Abbottabad 2014;26(4):455-458 14. Lepage L, et al. Clin J Am Soc Nephrol 2015;10:2136-2142 15. Patiromer professional information, www.ema.europa.eu #### **Conclusions** - Hyperkalemia is consistently associated with mortality across a wide range of clinical situations - Other factors modulate the "cardiac toxicity" of hyperkalemia and there is no threshold for mortality risk - Apart from its direct potentially fatal consequences, hyperkalemia is often responsible for underprescription of RAASi #### Thank you for your attention andreas.kistler@stgag.ch www.nephrologie-thurgau.ch #### Physiological role of K+ #### intracellular - Cell volume - pH - Enzymatic functions #### extracellular Resting membrane potential - → Neuromuscular function - →Cardiac rhythm - → Vascular tone ### Mechanisms leading to hyperkalemia **Excess potassium intake** **Nutrition** Potassium supplements **Potassium redistribution** **Acidosis** Insulin deficiency or resistance Drugs Strenuous exercice Tissue breakdown (tumor lysis, rhabdomyolysis...) Hemolysis Impaired renal function Impaired aldosterone secretion or action: Renin-angiotensin-aldosterone system (RAAS) inhibitors Reduced potassium excretion - Adrenal insufficiency - Pseudohypoaldosteronism - Hyporeninemic hypoaldosteronism Low distal Na⁺ delivery