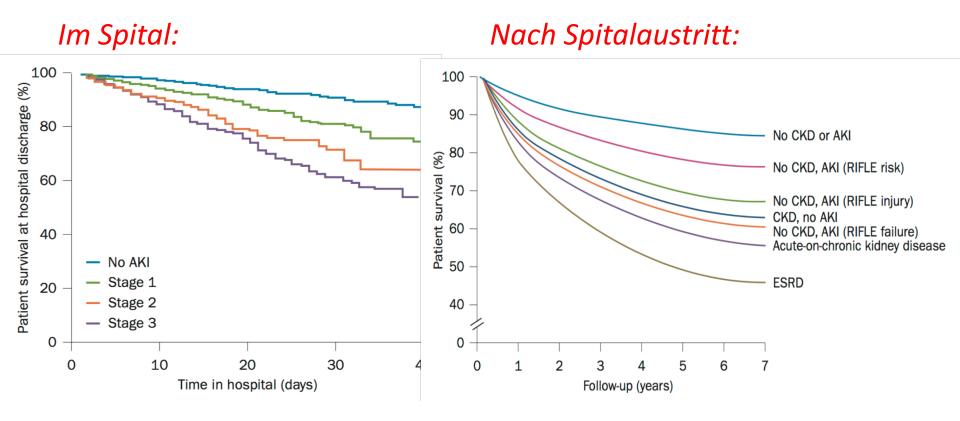
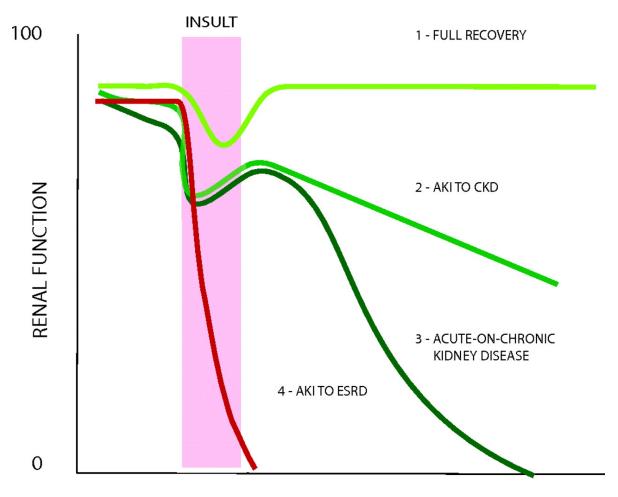


»Die akute Nierenschädigung


häufig übersehen und immer noch

PD Dr. med. Andreas Kistler Chefarzt Medizinische Klinik Kantonsspital Frauenfeld


AKI: tödlich?

Rewa & Bagshaw, Nat Rev Nephrol 2014;10:193

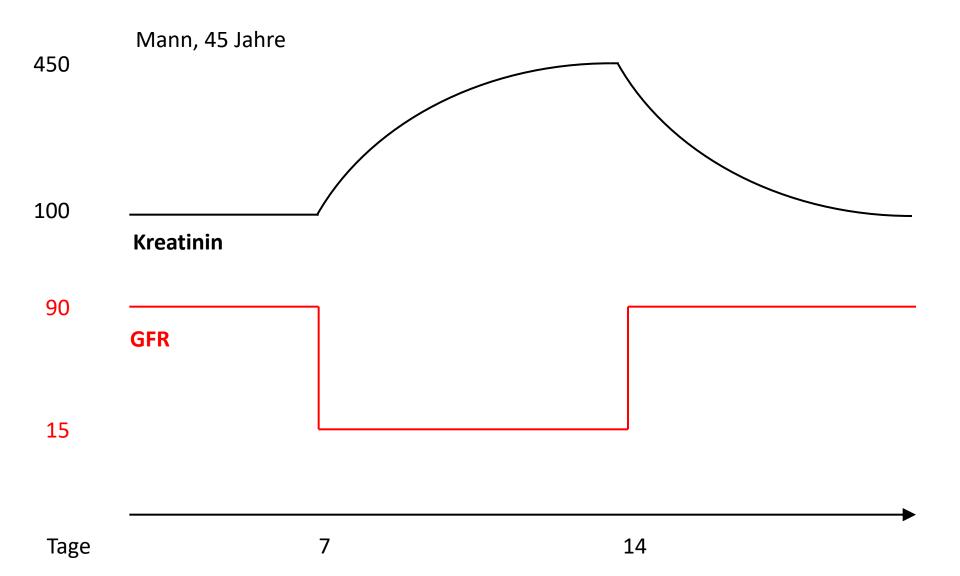
AKI - CKD - Kontinuum

TIME

Die akute Nierenschädigung – häufig übersehen und immer noch tödlich

65-jähriger Patient mit metabolischem Syndrom, DM2, Albuminurie

- Eintritt mit Sepsis bei Phlegmone am Bein
- BD 90/55mmHg, CRP 230mg/l


		Ent.Dat.	05.03.2019 Di 09:30	04.12.2018 Di 07:00
Kreatinin	62 - 106	µmol/l	113 H	75
eGFR CKD-EPI	>= 90	ml/min/1.73m2	59 (1)	92

Welche Aussagen stimmen?

- Die GFR beträgt 59 ml/min/1.73m²
- Der Krea-Anstieg ist i.R. der physiologischen Schwankungen
- Die Nierenfunktion ist mässig eingeschränkt
- Der Patient hat ein schweres AKI

GFR und Kreatinin bei AKI

Was ist ein akutes Nierenversagen?

- 2.1.1: AKI is defined as any of the following (*Not Graded*):
 - Increase in SCr by ≥ 0.3 mg/dl (≥26.5 μmol/l) within 48 hours; or
 - Increase in SCr to ≥ 1.5 times baseline, which is known or presumed to have occurred within the prior 7 days; or
 - Urine volume <0.5 ml/kg/h for 6 hours.

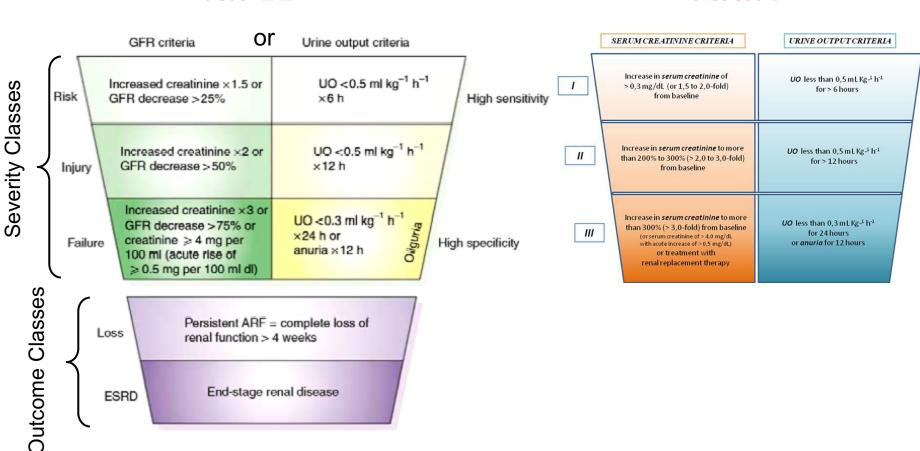
KDIGO 2012

AKI – Stadieneinteilung

KDIGO 2012

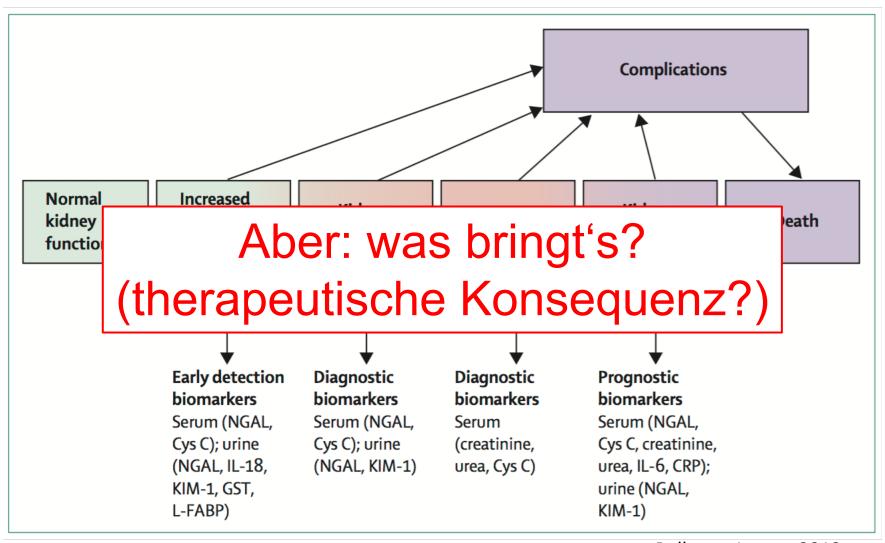
Table 2 | Staging of AKI

Stage	Serum creatinine	Urine output
1	1.5–1.9 times baseline OR ≥0.3 mg/dl (≥26.5 µmol/l) increase	<0.5 ml/kg/h for 6–12 hours
2	2.0–2.9 times baseline	$<$ 0.5 ml/kg/h for \ge 12 hours
3	3.0 times baseline OR Increase in serum creatinine to ≥4.0 mg/dl (≥353.6 µmol/l) OR Initiation of renal replacement therapy OR, In patients <18 years, decrease in eGFR to <35 ml/min per 1.73 m²	<0.3 ml/kg/h for ≥24 hours OR Anuria for ≥12 hours


ESRD

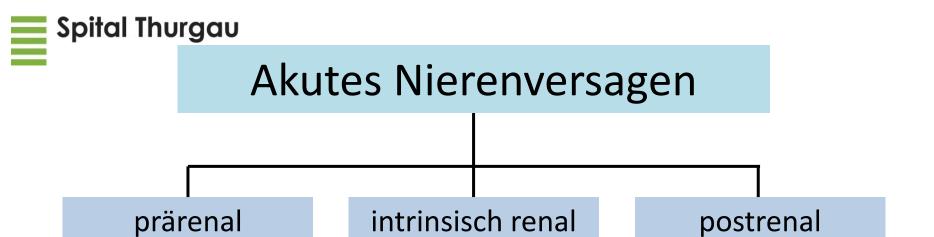
AKI - Stadieneinteilung

RIFLE


End-stage renal disease

AKIN

Früherkennung AKI mittels Biomarkern?



Take home message 1:

eGFR-Formeln sind beim AKI nicht verwertbar; beachten Sie bei instabiler Situation die dynamischen Krea-Veränderungen und den Urin-output

AKI ist eigentlich keine Diagnose...

Akutes Nierenversagen

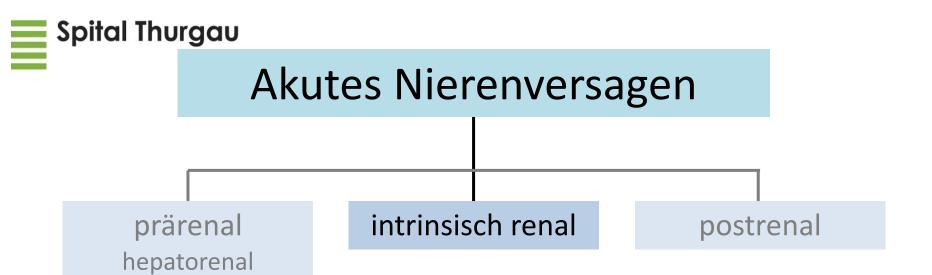
Ursachen:

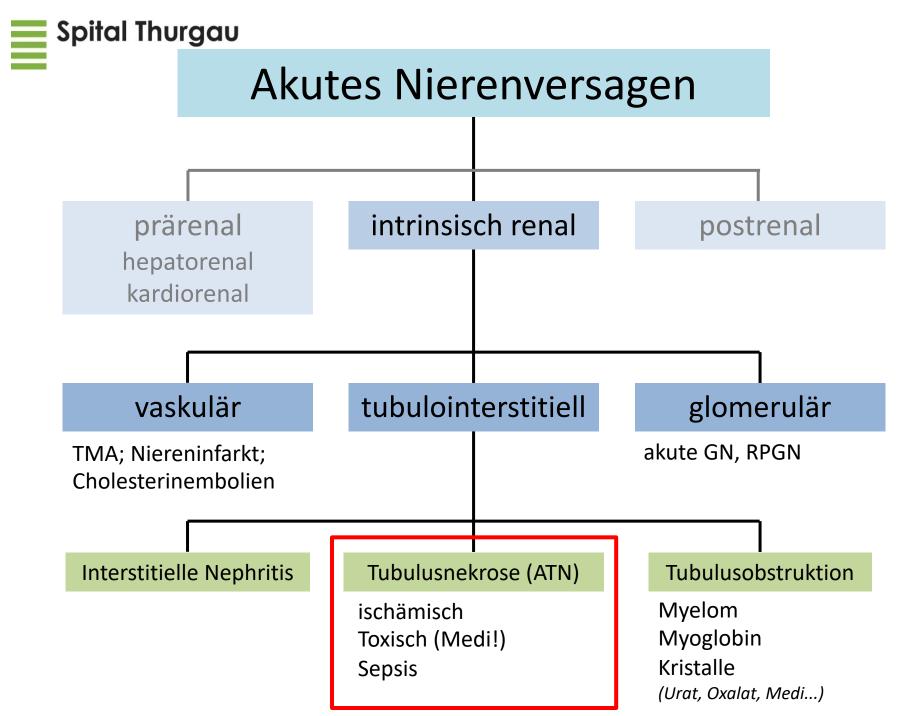
- Prostata-Hyperplasie
- Tumor
- Stein
- •

postrenal

Akutes Nierenversagen

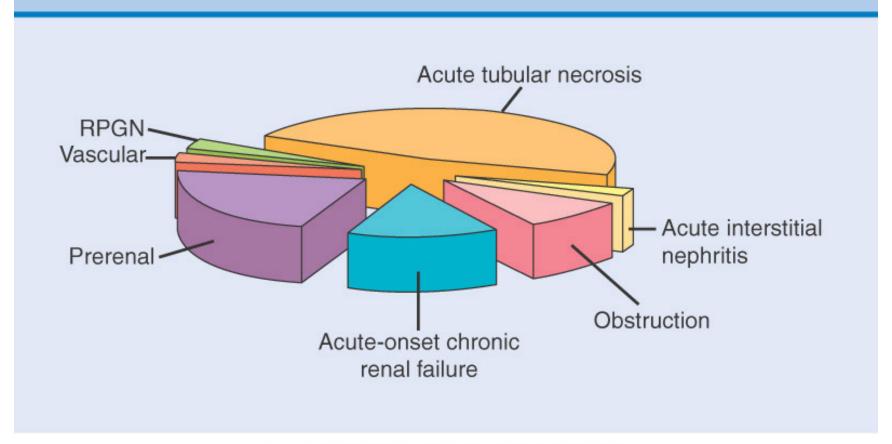
prärenal


- Blander Urinbefund
- FeNa <1% (cave Diuretika)
- FeHst <35%
- (Spez. Gewicht >1.020)
- (U_{Osmo} >500 mOsm/l)
- $(U_{Na} < 20 \text{ mm/l})$
- Anamnese und Klinik!
- Bei Verdacht: Volumentrial


Akutes Nierenversagen

prärenal hepatorenal kardiorenal

	Effektives art. Volumen	Extrazelluläres Volumen	Plasma- Volumen
Echte Volumendepletion	↓	↓	↓
Herzinsuffiizienz	↓	^	↑
Fortgeschrittene Leberzirrhose	↓	^	↑


kardiorenal

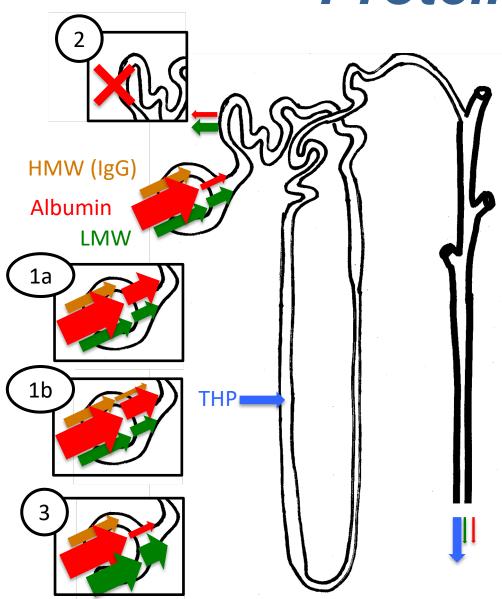
Ursache AKI nach Häufigkeit

Causes of ARF in hospital setting



Take home message 2:

AKI ist nicht gleich AKI – immer nach spezifischer Diagnose suchen, vor allem wenn die Ursache nicht evident ist!


Urinsediment bei AKI

Medikamentenkristalle bei Kristallnephropathie

Spital Thurgau

Proteinurie

Physiologische Proteinurie:

50(-130)mg/d THP

1-10mg/d Albumin

1-10mg/d LMW-Protein

Pathologische Proteinurie:

- 1. Glomerulär
 - a) selektiv, b) unselektiv
- 2. tubulär
- 3. overflow
- 4. (postrenal)

<150mg/d

1a

1b

2

(3)

4

Ziele:

- 1. Erholung der Nierenfunktion fördern
- 2. Folgen / Komplikationen des Nierenversagens minimieren

- Ursache beheben / behandeln, falls möglich
- "Medication review"
 - Nephrotoxische Medikamente
 - Renal eliminierte Medikamente
- Volumenmanagement / Hämodynamik
- Elektrolyte und Säure- / Basehaushalt
- Dialyse

- Ursache beheben / behandeln, falls möglich
- "Medication review"
 - Nephrotoxische Medikamente
 - Renal eliminierte Medikamente
- Volumenmanagement / Hämodynamik
- Elektrolyte und Säure- / Basehaushalt
- Dialyse

- Ursache beheben / behandeln, falls möglich
- "Medication review"
 - Nephrotoxische Medikamente
 - Renal eliminierte Medikamente
- Volumenmanagement / Hämodynamik
- Elektrolyte und Säure- / Basehaushalt
- Dialyse

- Ursache beheben / behandeln, falls möglich
- "Medication review"
 - Nephrotoxische Medikamente
 - Renal eliminierte Medikamente
- Volumenmanagement / Hämodynamik
- Elektrolyte und Säure- / Basehaushalt
- Dialyse

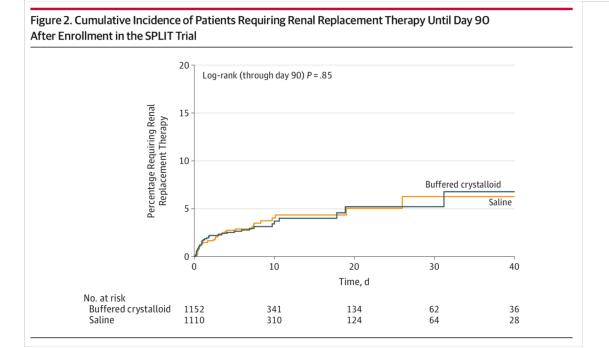
Flüssigkeit: was geben?

ORIGINAL ARTICLE

Balanced Crystalloids versus Saline in Critically Ill Adults

Table 2. Clinical Outcomes.*				
Outcome	Balanced Crystalloids (N=7942)	Saline (N = 7860)	Adjusted Odds Ratio (95% CI)†	P Value†
Primary outcome				
Major adverse kidney event within 30 days — no. (%) \ddagger	1139 (14.3)	1211 (15.4)	0.90 (0.82 to 0.99)	0.04
Components of primary outcome				
In-hospital death before 30 days — no. (%)	818 (10.3)	875 (11.1)	0.90 (0.80 to 1.01)	0.06
Receipt of new renal-replacement therapy — no./total no. (%)∫	189/7558 (2.5)	220/7458 (2.9)	0.84 (0.68 to 1.02)	0.08
Among survivors	106/6787 (1.6)	117/6657 (1.8)		
Final creatinine level ≥200% of baseline — no./total no. (%)§	487/7558 (6.4)	494/7458 (6.6)	0.96 (0.84 to 1.11)	0.60
Among survivors	259/6787 (3.8)	273/6657 (4.1)		
Among survivors without new renal-replacement therapy	215/6681 (3.2)	219/6540 (3.3)		

N ENGL J MED 378;9 NEJM.ORG MARCH 1, 2018



Research

Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of a Buffered Crystalloid Solution vs Saline on Acute Kidney Injury Among Patients in the Intensive Care Unit The SPLIT Randomized Clinical Trial

Paul Young, FCICM; Michael Bailey, PhD; Richard Beasley, DSc; Seton Henderson, FCICM; Diane Mackle, MN; Colin McArthur, FCICM; Shay McGuinness, FANZCA; Jan Mehrtens, RN; John Myburgh, PhD; Alex Psirides, FCICM; Sumeet Reddy, MBChB; Rinaldo Bellomo, FCICM; for the SPLIT Investigators and the ANZICS CTG

JAMA. 2015;314(16):1701-1710

Flüssigkeit: wie viel?

nobody knows...

British Journal of Anaesthesia **113** (5): 740-7 (2014) Advance Access publication 9 September 2014 · doi:10.1093/bja/aeu300

SPECIAL ARTICLES

Four phases of intravenous fluid therapy: a conceptual model

E. A. Hoste^{1,2}, K. Mait and A. D. Shaw¹¹ for

Table 1 Characteristics of di NPO, nil per os; ATN, acute ti

	Rescue	
Principles	Lifesavin	
Goals	Correct shock	
Time (usual)	Minutes	
Phenotype	Severe sh	
Fluid therapy	Rapid boluses	
Typical clinical scenario	Septic shockMajor	

Amount

trauma

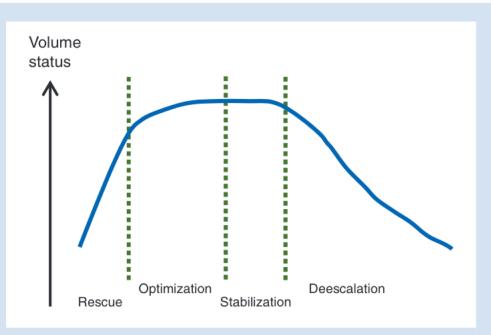


Fig 2 Patients' volume status at different stages of resuscitation. Reproduced with permission from ADQI (www.ADQI.org).

llum⁹, M. G. Mythen¹⁰

DKA, diabetic keto acidosis;

ation

overy

luid accumulated

eeks

e if possible ecessary i.v. fluids t on full enteral feed in

ry phase of critical illness ering ATN

Guidelines, for example, SSC, pre-hospital resuscitation, trauma, burns, etc.

Diuretika:

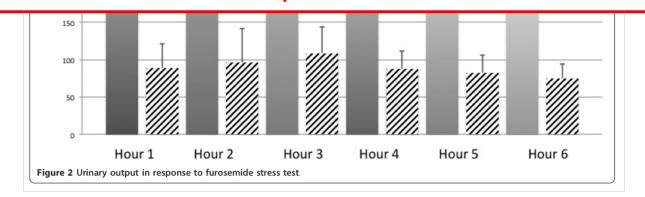
nephrotoxisch?

nephroprotektiv?

Take home message 3:

Volumenmenge und Diretika sollen dem Volumenstatus des Patienten angepasst werden (kein belegter Einfluss auf Verlauf AKI)

Spital Thurgau


Development and Standardization of a Furosemide Stress Test to Predict the Severity of Acute Kidney Injury

Chawla et al. Critical Care 2013, 17:R207 http://ccforum.com/content/17/5/R207

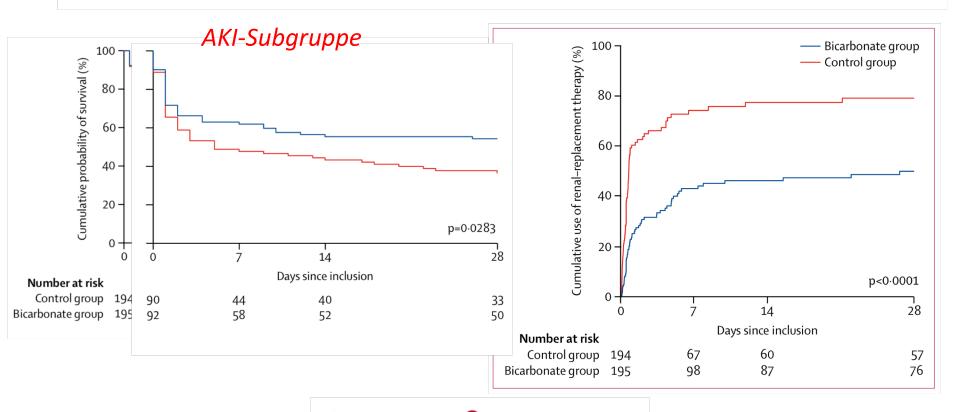
Lakhmir S Chawla^{1,2*}, Danielle L Davison¹, Ermira Brasha-Mitchell¹, Jay L Koyner³, John M Arthur⁴, Andrew D Shaw⁵, James A Tumlin⁶, Sharon A Trevino³, Paul L Kimmel⁷ and Michael G Seneff¹

Stringd Bars - Progressed to AKIN III

Furosemid 1mg/kg (Diuretika-naiv) oder 1.5mg/kg (diuretika-vorbehandelt) als Bolus -> Ausscheidung von <200ml über die nächsten 2h sagt die Entwicklung eines AKI Stadium 3 mit 88% Spezifität vorher

Therapie des AKI

- Ursache beheben / behandeln, falls möglich
- "Medication review"
 - Nephrotoxische Medikamente
 - Renal eliminierte Medikamente
- Volumenmanagement / Hämodynamik
- Elektrolyte und Säure- / Basehaushalt
- Dialyse



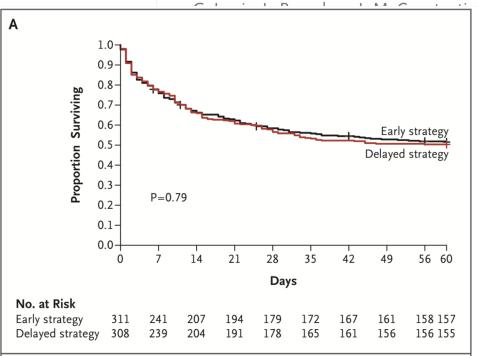
Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised controlled, phase 3 trial

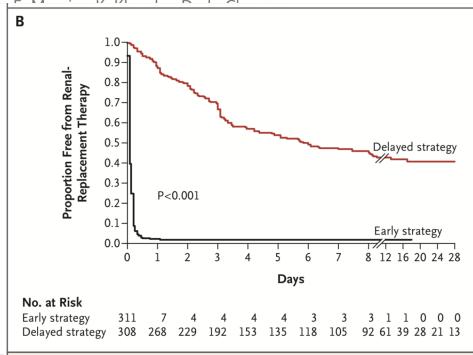
Samir Jaber, Catherine Paugam, Emmanuel Futier, Jean-Yves Lefrant, Sigismond Lasocki, Thomas Lescot, Julien Pottecher, Alexandre Demoule, Martine Ferrandière, Karim Asehnoune, Jean Dellamonica, Lionel Velly, Paër-Sélim Abback, Audrey de Jong, Vincent Brunot, Fouad Belafia, Antoine Roquilly, Gérald Chanques, Laurent Muller, Jean-Michel Constantin, Helena Bertet, Kada Klouche, Nicolas Molinari, Boris Jung, for the BICAR-ICU Study Group*

Lancet 2018; 392: 31-40

Therapie des AKI

- Ursache beheben / behandeln, falls möglich
- "Medication review"
 - Nephrotoxische Medikamente
 - Renal eliminierte Medikamente
- Volumenmanagement / Hämodynamik
- Elektrolyte und Säure- / Basehaushalt
- Dialyse

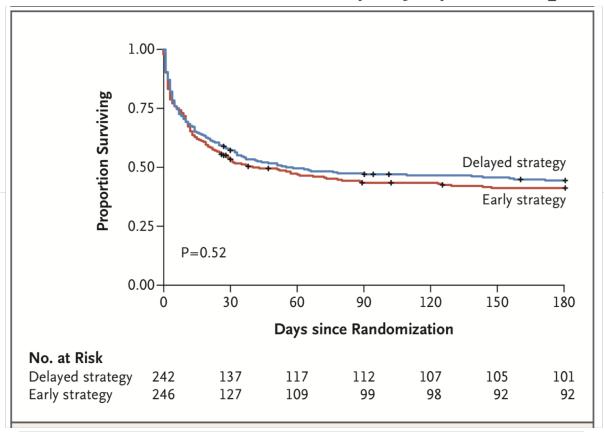

Dialyse: wann beginnen?



ORIGINAL ARTICLE

Timing of Renal-Replacement Therapy in Patients with Acute Kidney Injury and Sepsis

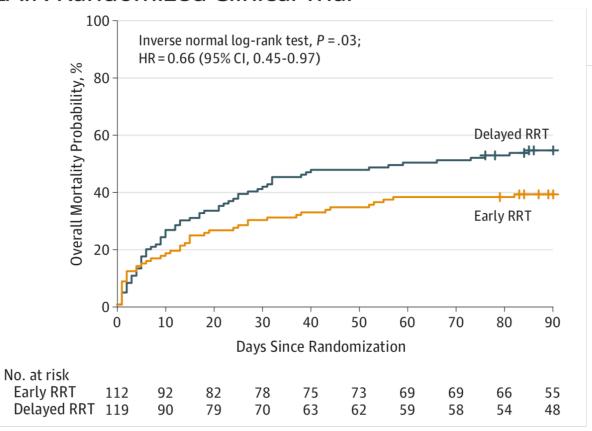
S.D. Barbar, R. Clere-Jehl, A. Bourredjem, R. Hernu, F. Montini, R. Bruyère, C. Lebert, J. Bohé, J. Badie, J.-P. Eraldi, J.-P. Rigaud, B. Levy, S. Siami,



ORIGINAL ARTICLE

Timing of Renal-Replacement Therapy in Patients with Acute Kidney Injury and Sepsis

N ENGL J MED 379;15 NEJM.ORG OCTOBER 11, 2018


Alexander Zar

Hermann Pave

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically III Patients With Acute Kidney Injury

The ELAIN Randomized Clinical Trial

JAMA. 2016;315(20):2190-2199.

Take home message 4:

Eine Dialysebehandlung soll begonnen werden, wenn die Komplikationen der Niereninsuffizienz konservativ nicht mehr behandelt werden können

Dialyse: wie und wie viel?

- Überlegenheit CVVHD(F) gegenüber IHD nicht belegt
- Kein Benefit einer hohen Dialysedosis
 - Standard CVVHD(F): 20-25ml/kg/h
 - Standard IHD: 3x/Woche

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JULY 3, 2008

VOL. 359 NO. 1

Intensity of Renal Support in Critically Ill Patients with Acute Kidney Injury

The VA/NIH Acute Renal Failure Trial Network*

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

OCTOBER 22, 2009

VOL. 361 NO. 17

Intensity of Continuous Renal-Replacement Therapy in Critically Ill Patients

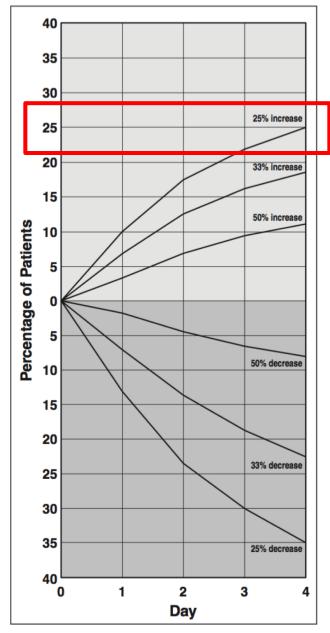
The RENAL Replacement Therapy Study Investigators*

«Nephroprotektion»

Oder:

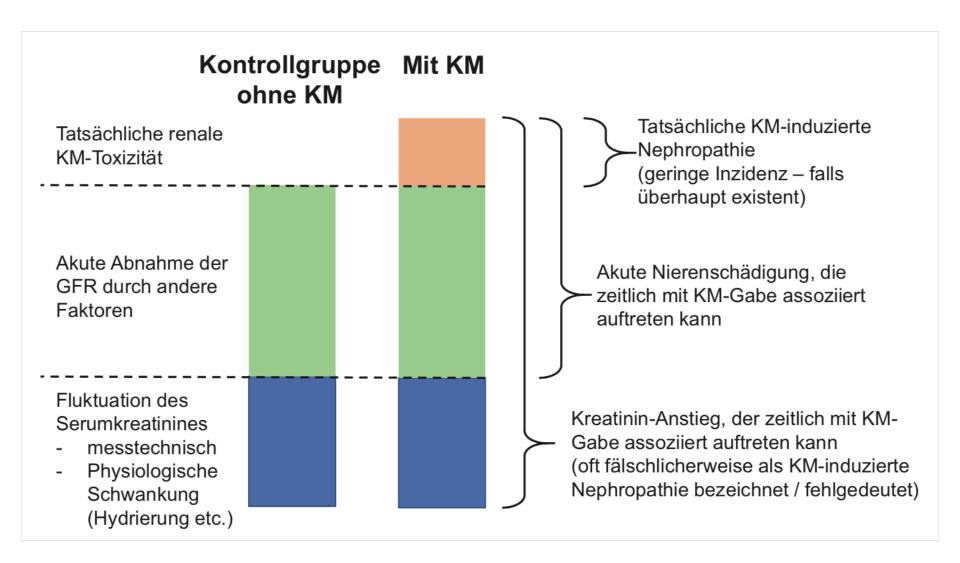
vorbeugen ist besser als heilen

Was wir Nephrologen gepredigt haben...


Optimale Blutdruckkontrolle (Ziel: <130/80 mmHg) • Striktes meiden von NSAR, iodhaltige Röntgenkontrastmittel Aur procedere:

- bei zwingender Indikation und nach entsprechender Vorbereitung

Beurteilung Akute Niereniinsuffizienz Stadium 2, whs. Kontrastmittel-induziert



KM-Nephropathie ohne Kontrastmittel?

Newhouse, AJR 2008; 191:376

Diebold & Kistler, Therapeutische Umschau 2018;75(6); 359–364

Also statt

"Kontrastmittel-induzierte Nephropathie"

eher

"Post-Kontrastmittel-Nephropathie"?

N-Acetylcystein und NaBic

- RCT, 5177 Pat, alle i.a.-KM (90% Koro), alle elektiv, wenige Interventionen
- eGFR 15-45 ml/min/1.73m² oder 45-60 + DM
- 2x2-Design:
 - 0.9% NaCl vs. 1.4% NaBic
 - N-Acetylcystein vs. Placebo

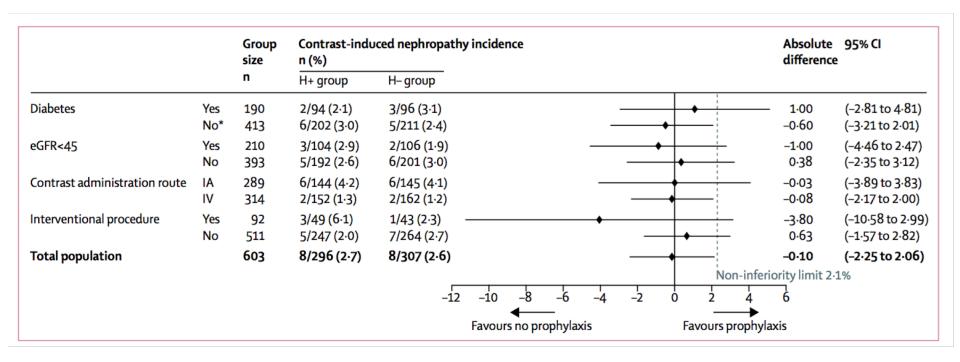

Tod / Dialyse / Krea +50% nach 90 Tagen

Table 3. Primary and Secondary End Points.										
Outcome	Sodium Bicarbonate (N = 2511)	Sodium Chloride (N=2482)	Odds Ratio (95% CI)	P Value	Acetylcysteine (N=2495)	Placebo (N = 2498)	Odds Ratio (95% CI)	P Value		
	no. of patients (%)			1	no. of patients (%)					
Primary end point*	110 (4.4)	116 (4.7)	0.93 (0.72–1.22)	0.62	114 (4.6)	112 (4.5)	1.02 (0.78–1.33)	0.88		
Secondary end points										
Contrast-associated acute kidney injury†	239 (9.5)	206 (8.3)	1.16 (0.96–1.41)	0.13	228 (9.1)	217 (8.7)	1.06 (0.87–1.28)	0.58		
Death by 90 days	60 (2.4)	68 (2.7)	0.87 (0.61–1.24)	0.43	67 (2.7)	61 (2.4)	1.10 (0.78–1.57)	0.59		
Need for dialysis by 90 days	32 (1.3)	29 (1.2)	1.09 (0.65–1.81)	0.73	30 (1.2)	31 (1.2)	0.97 (0.58–1.60)	0.90		
Persistent kidney impairment by 90 days	28 (1.1)	25 (1.0)	1.10 (0.64–1.91)	0.71	26 (1.0)	27 (1.1)	0.96 (0.56–1.66)	0.89		
Hospitalization with acute coronary syn- drome, heart failure, or stroke by 90 days	272 (10.8)	251 (10.1)	1.08 (0.90–1.29)	0.40	244 (9.8)	279 (11.2)	0.86 (0.71–1.04)	0.11		
All-cause hospitalization by 90 days	1071 (42.7)	1052 (42.4)	1.01 (0.90–1.13)	0.85	1069 (42.8)	1054 (42.2)	1.03 (0.91–1.15)	0.64		

Hydrieren: für die Katz?

- RCT, 660 Pat (ca. 50% i.a. / 50% i.v.-KM)
- eGFR 30-45 ml/min/1.73m² oder 45-60 + weiterer Risikofaktor
- +/- Hydrierung mit 0.9% NaCl

... oder gar schädlich? Really AMACING!

	H+ group	H– group	Absolute difference: H-group minus H+ group (95% CI)	p value					
Sequelae of intravenous hydration in the standard prophylactic treatment group									
Symptomatic heart failure	13/328 (4.0%)	0/332	-4·0 (-6·08 to -1·85)	0.0001					
Hypernatraemia	0/328	0/332	0	1.0000					
Hyponatraemia	1/328 (0.3%)	0/332	-0·3 (-0·90 to 0·29)	0.4970					
Arrhythmia	4/328 (1.2%)	0/332	-1·2 (-2·41 to -0·03)	0.0604					

Exclusion criteria: eGFR <30 ml/min/1.73m² IPS Notfalluntersuchungen

...

Take home messages Kontrastmittelnephropathie

- Risiko wurde klar überschätzt!
- Bei deutlich vorgeschädigten Nieren kann eine nephrotoxische Wirkung von KM nicht ausgeschlossen werden
 - Bei deutlicher CKD / AKI alternative Bildgebung erwägen
 - Aber *nicht* auf wichtige, klar indizierte Untersuchung verzichten
- Hydrieren nur bei möglicher Hypovolämie
- Kein NaBic, kein N-acetylcystein

Prophylaxe des AKI: wie dann?

- Vorsicht bei nephrotoxischen Medikamenten:
 - NSAR
 - Vancomycin, Gentamicin (Spiegelkontrolle!)
- Hypotonien vermeiden
 - Intraoperativ
 - Cave mit Antihypertensiva bei akuter Erkrankung
- Volumen: bei "high volume resuscitation" möglicherweise besser RiLac als NaCl
- Risikopatienten erkennen (CKD, DM, CHF)

Zusammenfassung / THM

- Dynamische Krea-Veränderungen beachten;
 eGFR-Formeln nicht valide bei AKI
- Ursächliche Behandlung wenn immer möglich
- Volumen- und Diuretikagabe nach Volumenstatus
- Früher Dialysebeginn ohne Nutzen
- Die Rolle von iodhaltigem KM wurde überschätzt

Danke für die Aufmerksamkeit

www.nephrologie-thurgau.ch